Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

Completed Technology Project (2006 - 2006)

Project Introduction

Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We propose to develop a highly efficient low-cost regenerator for regenerative cryocoolers with cooling temperatures in the range of 15 K and below. The proposed regenerator uses an innovative non-rare-earth material to achieve a volumetric specific heat of about 0.65 to 0.31 J/cm3-K at temperatures of 15 to 4.2 K. The large heat capacity will substantially reduce the thermal swing during periodic heat transfer and therefore improve the efficiency of low-temperature regenerative cryocoolers. The regenerator will be lightweight and easy to fabricate. In Phase I we will optimize the regenerator for a specific cooling application. We will use the resulting design and model to show that a regenerative cryocooler can achieve a very high efficiency. In Phase II we will build a prototype regenerator, measure its key performance parameters, and integrate it with an existing cryocooler to demonstrate its high thermal effectiveness.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead Organization	NASA Center	Moffett Field, California
Creare LLC	Supporting Organization	Industry	Hanover, New Hampshire

Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	
Organizational Responsibility	
Project Management	
Technology Areas	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

Completed Technology Project (2006 - 2006)

Primary U.S. Work Locations	
California	New Hampshire

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - ☐ TX14.1 Cryogenic Systems
 ☐ TX14.1.3 Thermal
 Conditioning for
 Sensors, Instruments, and High Efficiency
 Electric Motors

